
SQenIoT: Semantic Query Engine for Industrial
Internet-Of-Things Gateways

Charbel El Kaed∗†, Imran Khan†, Hicham Hossayni†, Philippe Nappey†
Schneider Electric Industries: ∗Digital Services Platform, †Corp. Tech. - Architecture & Systems Team

Email: {charbel.el-kaed, imran2.khan, philippe.nappey} @schneider-electric.com
hicham.hossayni@non.schneider-electric.com

Abstract—The Advent of Internet-of-Things (IoT) paradigm
has brought exciting opportunities to solve many real-world
problems. IoT in industries is poised to play an important role not
only to increase productivity and efficiency but also to improve
customer experiences. Two main challenges that are of particular
interest to industry include: handling device heterogeneity and
getting contextual information to make informed decisions. These
challenges can be addressed by IoT along with proven technolo-
gies like the Semantic Web. In this paper, we present our work,
SQenIoT: a Semantic Query Engine for Industrial IoT. SQenIoT
resides on a commercial product and offers query capabilities to
retrieve information regarding the connected things in a given
facility. We also propose a things query language, targeted for
resource-constrained gateways and non-technical personnel such
as facility managers. Two other contributions include multi-
level ontologies and mechanisms for semantic tagging in our
commercial products. The implementation details of SQenIoT
and its performance results are also presented.

Index Terms—Internet-of-Things; Semantic web; Ontology;
Industrial Internet-of-Things; Embedded Systems

I. INTRODUCTION

The Internet-of-Things (IoT) promises to interconnect de-
vices and objects together on a massive scale [1]. Such
amalgamation allows interactions and collaborations between
these entities in order to fulfill specific tasks. Eventually,
such tasks differ according to the context and environment
of the application. They range from sensing and monitoring
of a physical property such as temperature or humidity to
controlling and optimizing a facility in order to achieve a larger
objective, e.g. an energy management strategy.

Semantic Web technology [2] is gaining more popularity
and over the years we have observed its use to develop rich
and interactive applications [3]. In industrial environments,
Semantic Web [4] has proved to be a potent solution for issues
such as data interoperability. It is particularly useful to link
cross domain data and to infer additional knowledge making
applications better aware of the context.

In industrial domain, connected things are of heterogeneous
types and range from low-end devices such as sensors and
actuators to more capable ones such as gateways. Such di-
versified connected things embed different resources : CPU,
memory and bandwidth which impact their communication
mediums, protocols and data models. Due to the heterogene-
ity in various data models, data interpretation and analysis
become seriously challenging. Another aspect of working
in embedded domain are the inherit limitations that lead

to scalability issues and high complexity in using standard
technologies like SPARQL [5]. Therefore, we need lightweight
solutions, that are scalable, less complex and user friendly.

In this paper we present our Semantic Query Engine for
Industrial Internet-of-Things (SQenIoT) to tackle the semantic
challenge we faced in our business due to plethora of devices
as well as data heterogeneity coming from different domains.
SQenIoT is a simple but robust solution to provide Schneider
Electric gateways, the ability to process cross domain data
from heterogeneous devices and sensors. The power of Se-
mantic Web is used for two purposes: first, to tackle the data
heterogeneity and second, to search, filter and aggregate data at
the edge and push only the relevant data to our cloud platform.

The rest of the paper is organized as follows: Section II
presents the real motivation behind our work. We draw a set
of requirements from a scenario to illustrate the bottleneck
faced by the current solution. Then we describe our proposal
in section III. Section IV covers the implementation details
along with results. We overview, in section V, related works
then conclude and depict our future steps in section VI.

II. BACKGROUND AND REQUIREMENTS

In the industry, more often, communication protocols and
data representation are fairly concise and low level. Usually
it consists on a set of registers exposing measured data which
can be accessed thanks to a prior knowledge on how those
registers are mapped to specific information. For example,
on a specific Modbus1 device, register 3650 measures active
energy in KWh. Such information as the measured quantity
(energy, power, temperature) and their units (Watt, Kilo Watt,
Celsius, and Fahrenheit) are explicit in a data sheet. Once
retrieved, the data can be expressed in a data model with
human friendly names such as ’Active-Energy-into-the-Load’
or ’Temperature’. However, the naming convention is human
dependent and is only syntax-based which leads to inconsis-
tency and incompatibility. For example. a system might expose
temperature data as ’Temperature’ while another system will
refer to it as ’T’ or ’Temp’. Therefore, it requires a lot of
effort to make applications and machines to understand the
meaning of the data before aggregating and analyzing it. Even
though this process can be semi-automated as we depicted in
our previous work [6], a human verification is still needed to

1www.modbus.org

SESA388470
Typewritten Text

SESA388470
Typewritten Text
This paper has been accepted in the technical track of IEEE 3rd World Forum IoT (IEEE WF-IoT) to be held on 12th Dec. 2016. This is an author copy for personal record.

Fig. 1. Comx Architecture Deployment Example

validate the semantic matching. In addition to the classical
telemetry data sensed by the connected things, contextual
information is no longer considered as a second class citizen of
the data realm. For instance, the energy consumed by lighting,
cooling, heating by zone and by person is more valuable than
the total energy consumed by the building. Therefore, in order
to have an interoperable data that can be analyzed across
domains, a common metadata vision is required.

Schneider Electric introduced a commercial IoT gateway,
the Comx’2002, targeting small to medium facilities. It is
capable of integrating heterogeneous devices and sensors
with different communication mechanisms, protocols and data
models as shown in Fig. 1. Additionally, the Comx’200 can
push data to Schneider Electric Cloud Platform for storage
and analysis. For example, at the application level, the Facility
Insights Services3 query the collected data for several purposes
such as energy efficiency, asset maintenance and management
in different market segments like retail or health-care.

The Comx’200 is designed to be installed and commis-
sioned by an electrician. However, after its installation and
commissioning, a Comx’200 has several stakeholders. In this
work, we consider a facility manager who is mainly responsi-
ble to ensure : 1) the comfort of the facility’s occupants, 2) air
quality (CO2 and humidity), and predefined temperature range
according to the existing weather conditions, 3) facility budget
regarding energy consumption by lighting, heating and cooling
equipments, 4) maintenance of the facility and the equipment.

Typically a facility manager is a non-technical person
and based on our real-world interactions and deployment
experiences, he expects from a gateway the ability to : a)
Search for specific devices/sensors easily. b) Configure alerts
or notification messages using customizable conditions. c)

2www.schneider-electric.com/en/product-range/62072-enerlin-x-com-x
3www.schneider-electric.com/en/product-range/63092-facility-insights-

services

Execute specific queries and quickly look up his facility’s
real-time data like energy consumption by area, by time and
other parameters. d) Achieve all these without being compelled
to manipulate different data models or use complex query
language which may involve extra learning steps.

Based on these requirements and the general feedback, it is
evident that not only we need to provide a technical solution
for the business requirements but also we need to make it user
friendly with right level of abstraction to hide the complexity
and to provide rich interactive experience.

III. CONTRIBUTIONS

In this section we discuss our contributions, we first present
our approach relying on multilevel ontologies to support a
common metadata vision. Later we present our solution to
perform semantic tagging of the device data, i.e. add additional
metadata using the concepts in ontologies. Finally we discuss
SQenIoT and our proposed domain specific query language.

A. Multi-level Ontologies

Heterogeneity reigns between devices and systems across
domains, however, they have a lot in common. Therefore,
at Schneider Electric, while working with different business
units and segments on their data models and applications,
we defined two sets of ontologies: common ontologies and
specific ontologies, as illustrated in Fig 2.

The common ontologies consist of common concepts used
across the business units and segments such as :

• Protocols: classifies the communication protocols along
with information regarding the supported communication
medium and range. Such information can be used during
diagnostic and maintenance operations.

• Physical quantities: expose the sensed concepts e.g. tem-
perature or calculated concept such as energy.

• Units: used by the physical quantities to express the
quantity symbol along with its SI unit. It also points out
the conversion from a unit to another and handles scale
factors like Ampere to µAmpere.

• Topological relations: classifies the relations between
entities and specifies the property of such relations e.g.
transitive, symmetric. It depicts general relations such as
is-ConnectedTo which capture several dimensions like the
electrical wiring, the network connectivity. Such relations
have become a necessity for measurement aggregation.

• Localization: sets a common definition for entities like
building or floor. This ontology also defines such concepts
along with the relations between, e.g. a room isLocatedIn
floor where isLocatedIn is a transitive relation.

• Usage: general ontology which can be combined with the
other common ontologies for instance the active energy
for lighting or the outside air temperature.

The common ontologies capture the shared concepts across
business units and segments, however, these ontologies are
extensible thanks to the expressiveness of the ontology web
language. The specific ontologies are silos & domain oriented
and rely on the common ontologies. For instance, in Fig. 2, the

SESA388470
Typewritten Text
This paper has been accepted in the technical track of IEEE 3rd World Forum IoT (IEEE WF-IoT) to be held on 12th Dec. 2016. This is an author copy for personal record.

Fig. 2. Common and Specific Ontologies

Data Centers ontology would rely on the Physical Quantities
ontology to express the measurements and on the Localization
ontology to add the concept of a rack. This concept will be
added as a sub-concept of the general class Location from
the Localization ontology. Therefore, any instance of the rack
concept can still be queried thanks to the inference capability.
The ontology modeling requires several iterations to achieve
a relatively stable version, a set of grey area has been used as
a buffering zone before deciding whether a concept used in
more than two specific ontologies should become a common
concept or not. Moreover, the specific ontologies can also rely
on existing ontologies such as the HayStack project4 which is
focused on the Building Automation domain.

The global and local ontologies are hosted at Schneider
Electric Cloud Platform and a subset is deployed at the
gateways level to help in device data annotation.

B. Semantic Tagging

The annotation is the process of linking concepts from
common or/and global ontologies with the actual data exposed
by the gateways, as shown in Fig. 3(1). Like any multi-
protocol gateway, the real sensors, devices and gateways are
represented internally in a data model or an avatar which
resides in memory or is persisted on disk. A semantic tag is a
triplet composed of an ontology module reference, a concept
or a verb and an optional instance from the ontology. The
semantic tag is added to the internal representation (data model
or avatar) at the gateway level. A semantic tag is added on a
device or a variable representation. For example Unit: ◦C and
Protocol:Modbus are two semantic tags referencing respec-
tively the Unit (resp. Protocol) and the instance ◦C (resp.
modbus) in the ontology modules. The Protocol:modbus tag
can be added at a meter level, while the Unit: ◦C tag is added
at the variable level. The conversion rule between ◦C and
◦F for example is expressed and stored as a rule in the Units
ontology. We distinguish between the two different semantic
tagging mechanisms as automatic tagging and commissioning.

Automatic Tagging: a driver handles the protocol commu-
nication along with the data decoding up to its representation
in the gateway’s data model. For instance, a Modbus driver is
expected to decode and extract a data frame from a specific

4project-haystack.org

Fig. 3. Architecture: Semantic Tagging and Query Principals

Modbus register along with identifying its structure in order to
expose it in the gateway’s data model. The automatic tagging is
performed at the driver level for at least the Protocols, Units
and Quantities. Although the driver is capable of automatic
annotation of part of the data, the contextual information like
usage and location are only known at the gateways and are
specified at the commissioning phase.

Commissioning: it is handled through a user interface during
the gateway installation phase after all the wiring and pairing
has been performed. For instance, the usage of the sensor
along with its location are known only at the commissioning
phase hence, the installer relies on a commissioning tool in
order to tag the data from both the Usage and Location
ontologies. Fig. 4 shows an example from our gateway, where
the installer can select a sensor and tag its physical location by
relying on the Location ontology module. The commissioning
tool displays the options, based on the Location ontology, to
instantiate the facility (e.g. buildings, floors, rooms).

C. SQenIoT: An IoT Semantic Query Engine

Once the data is annotated and exposed by the gateway,
the query execution can take place. As shown in Fig. 3(2),
SQenIoT exposes a query interface along with a Domain
Specific Query Language. After several discussions with our
marketing and technical personnel, we converged on the fact
that a query language can be proposed but it has to be
simple with a natural language-like grammar. We designed

Fig. 4. Semantic Tagging through the Commissioning Tool

SESA388470
Typewritten Text
This paper has been accepted in the technical track of IEEE 3rd World Forum IoT (IEEE WF-IoT) to be held on 12th Dec. 2016. This is an author copy for personal record.

and proposed a query language5 which takes into account a
combination of tags and expressions to filter the data. SQenIoT
is capable of handling the following types of queries:

i) Search queries that include any block of semantic tags
along with a block of filtering expressions. For example,
the following query can be handled by SQenIoT. Search
Device protocol:ZigBee and quantity:temperature and loca-
tion:Lab101 with value > 22. The protocol and location tags
are attached to the device level, however, the quantity is
attached to the variable measuring temperature. SQenIoT will
take into account the variables of a device when performing
the search. For this reason, the tagging should be as much
accurate as possible. Moreover, the query engine allows to
combine common elements from the data model to be used
from the query such as name, value and unit.

ii) Basic aggregation functions are supported by SQenIoT
such as Min, Max, Sum, Avg. Such queries are used to
retrieve, for example the average temperature of all sensors in
a building or the sum of consumed energy by usage or by zone
like Sum Variable measures:ActiveEnergy and usage:Lighting
and location:Building2.

iii) Subscribe function allows our customers to handle
situations where devices appear/disappear at a specific loca-
tion for a given measurement type. It also comes handy to
generate alerts and notifications when an event of interest
occurs, e.g. an event on change compared to a user defined
threshold. Such subscriptions are configurable according to
the business requirements. For example, it is possible to
subscribe to an event by checking the value of a temperature
sensor every 10 minutes for the next month at a particular
location and generate an alert every time the temperature
value is higher than a specific value. SQenIoT is also ca-
pable of collecting data and pushing to Schneider Electric
Cloud or to a remote REST endpoint. For example : Collect
Device (quantity:temperature or quantity:humidity) or (quan-
tity:ActiveEnergy and usage:mainMeter)) and @loc:floor1
From 2016-03-21 To 2017-03-21 every 00:10:00 towards
http://MyRestEndpoint.com/rest. This query collects the two
types of devices on floor1. SQenIoT will push this data for a
year every 10 min to the indicated REST endpoint.

iv) Localized Inference SQenIoT implements an inference
engine to reason and infer additional knowledge. The inference
feature is specified at query time. As shown in Fig. 4, the given
device was annotated with Stallman lab which is located in
Floor 1 and building T3. An example of a query relying on the
inference is Search device @location:T3. Although there is no
device tagged with location:T3, this query will still return the
device after applying the inference (since Stallman is located
in T3). The special character @ on a tag is a request to apply
the inference feature. Currently the inference is applicable on
the location and the device type tags such as @type:sensor
which is the parent class of all the sensors.

5sites.google.com/site/charbelweb/query/QueryGrammar.g

Fig. 5. Abstract Syntax Tree Query Example

IV. IMPLEMENTATION & EVALUATION

SQenIoT has been implemented as a standalone software
component and can use any annotated data model. In this
section we present our implementation in detail. First we
discuss the implementation choices we made, and then we
present our setup and the performance metrics. We end this
section with a discussion of the results.

A. Implementation Choices

Figure 3 shows the implemented SQenIoT components, i.e.
query decoder, query evaluator & ontology handler.

1) Query Decoder (QD): It relies on our domain specific
query language. Its grammar follows the LL1 derivation. QD
uses the Antlr36 library which takes as input our grammar5 and
then generates the required code to verify the queries lexical
and syntactic conformity. Once validated, Antlr generates an
Abstract Syntax Tree as shown in Fig. 5.

2) Query Evaluator (QE): QE implements our query algo-
rithm and performs the following functions : search the devices
according to user queries, publish data to remote platform,
handle subscriptions and aggregation functions such as Min,
Max, Sum, and Average. QE looks up for the devices and
variables in the data model using the tags specified in the
query and then compares them with the conditions specified
in the expressions block (e.g. value > 25). When inference is
required on a tag QE invokes the ontology handler module.

3) Ontology Handler (OH): OH implements a simple infer-
ence engine, instead of relying on existing ones like Apache
Jena7 due to less resources of the gateways. The inference
capability is specified on a tag. For instance, as shown in
Fig. 4, the given device was annotated with Stallman which is
located in Floor 1 which in turn is located in building T3.
OH relies on the transitive nature of the object properties
between the instances in the case of the location. On the
device catalogue ontology, OH would rely on the hierarchical
relations between the device classes. OH uses ontologies
such as Units and Physical Quantities are already deployed
on the gateway. The Location ontology is built during the
commissioning phase using a GUI and stored on the gateway.

B. Implementation Setup

The implementation setup is shown in Fig. 3. SQenIoT is
implemented on our new hardware platform called ECP. The

6www.antlr3.org
7www.jena.apache.org

SESA388470
Typewritten Text
This paper has been accepted in the technical track of IEEE 3rd World Forum IoT (IEEE WF-IoT) to be held on 12th Dec. 2016. This is an author copy for personal record.

ECP board consists of a SoCA9, based on dual core Cortex
A9 chip clocked at 900Mhz with 1GB RAM. It runs Linux8

for embedded systems.
We implemented a Random Query Generator (RQG) to

associate different combinations of tags and expressions to
handle various possible queries. Each configuration consists
of d devices, where d ≤ 1000. Each device has two tags:
location and protocol with one possible value for each tag, e.g.
a device can have tags location:Grenoble, protocol:Zigbee.For
variables, we randomly associate between 1 to 5 variables to
each device. Each variable has quantity tag with random value.

C. Performance Metrics

The performance of SQenIoT is assessed in terms of the
following metrics: Query Decoding Time (QDT), Query Eval-
uation Time (QET) and Inference Time (INFT). QDT and
QET are measured in Microseconds while INFT is measured
in Milliseconds All are average values of 100 iterations. We
do not consider the network or communication delays.

QDT measures the time difference between the reception
and the processing of the query by the QD component. It
includes the time taken to parse the query according to our
grammar and to generate the AST. Each set contained 1000
random queries created with N tags and M equations where
N ∈ [1− 12] and M is either 0, 1 or 2.

QET measures the time taken to evaluate conditions spec-
ified in a given query along with the returned response. For
QET, we executed two types of queries: Search Device Queries
(SDQ) and Search Variable Queries (SVQ). For SDQ type, we
generated random queries containing T Location + T Protocol
tags. For SVQ type, we generated random queries containing
T Quantity tags. For both query types, T ∈ [1− 6].

INFT measures the difference between the evaluation time
of a query that uses inference against the one that does
not. For instance, in our Location ontology, Stallman and
Floor1 are located in T3 building, so the query Search device
@Location:T3 is equivalent to Search device Location:T3 or
Location:Stallman or Location:Floor1 query.

D. Results

Fig. 6 shows the QDT. Our results show that the time to
decode a query is negligible. The minimum time is about 0.3
ms for a query containing a single tag. For more complex
queries, the QD takes on average 0.033 ms and 0.045 ms extra
for each additional tag and equation respectively.

Figure 7 shows that the QET, in SDQ, is a linear function
of the configuration size and the number of tags used. In the
worst case, (850 devices with 12 tags), the average QET is
≈85 ms. We found that the presence of equations in SDQ
increases its QET We also determined that the increase in QET
also depends on the number of returned results. For example,
for 180 returned results, when there are 500 devices, QET
increases by ≈0.2 ms per result.

For instance, consider that the query Search device lo-
cation:Europe and protocol:ModBus returns Y results in a

8www.windriver.com/products/linux/

Fig. 6. Query Decoding Time (QDT)

Fig. 7. Query Evaluation Time (SDQ Type)

Fig. 8. Time Saved by using Inference

configuration of 500 devices in T0 ms. Then the query Search
device location:Europe and protocol:ModBus with value > 25
will be executed in about (T0+0.2∗Y) ms. The same results
were obtained for the SVQ case.

In this work, we found that the inference capability can
also help to reduce the QET. To evaluate INFT, we created
random configurations of sizes (k ∗ 1000 where k ∈ [1 − 9])
and executed predefined queries using inference over 2, 3, and
up to 8 tags. For each query, we also executed its equivalent
query (without inference) to get the difference.

Figure 8 shows the time saved by using inference We
observe that inferring concepts from ontologies takes less time
than the parsing of tags and conditions of individual queries
one by one. This is especially true when the number of tags
deduced by the inference are large enough.

Other type of queries that can be handled by SQenIoT

SESA388470
Typewritten Text
This paper has been accepted in the technical track of IEEE 3rd World Forum IoT (IEEE WF-IoT) to be held on 12th Dec. 2016. This is an author copy for personal record.

include : i) aggregation, ii) subscribe, and iii) collect queries.
Aggregation queries require computation of the aggregated
values on the results returned by the search queries. For
example, the query avg variable quantity:Temperature is eval-
uated by computing the average of the values returned by
the query Search variable quantity:Temperature. The subscribe
and collect queries are, in fact, periodic tasks which send the
results of a search query to the defined targets (e.g. a remote
application). So, we can generalize the previous evaluation
results of the search queries to these specific query types.

The SQenIoT implementation fulfills the identified require-
ments in Section II and has been tested at several pilot sites.

V. RELATED WORK

There have been various efforts in providing semantic-aware
gateways in different domains. However none of them fulfills
our requirements identified in Section II.

The authors in [7] discuss a unified semantic engine for IoT
and Smart Cities. The issues like data interoperability, reason-
ing, abstraction, scalable, unified access through web services,
secure, and real-time are discussed. However, the work does
not provide any details regarding the implementation or the
technologies that are used to address the identified issues.

The authors in [8] present a semantic smart gateway
framework to achieve a loosely-coupled interoperability for
interconnection between devices from heterogeneous vendors
and to allow 3rd party application developers to write applica-
tions for these devices. The proposed semantic smart gateway
has ‘on-the-fly’ ontology learning and ontology alignment
features. While it tackles the device heterogeneity, the authors
have suggested to use a SPARQL end-point for querying which
is not a good choice for embedded systems. This work also
lacks any implementation details and results.

The work in [9] is related to industrial domain thus is
comparable to our work. The authors propose a solution to
tackle the typical industrial use cases, e.g. industrial field ser-
vice where service engineers use plethora of tools to identify
issues of the installed devices. The semantic aspect only deals
with the mapping of the SOAP bindings to the networking
platform. The proposed gateway abstracts network services
and translates them to a standard DPWS [10] interface.

In [11], a SOA-based architecture is presented to deal with
the commonly operational disruptions (device break down
or malfunctions) in industry. The proposed gateway contains
a semantic assistant that uses semantic reasoning to find
replacement devices using semantic identification of devices,
services, and by mapping their features. However, there is
no support for querying for the devices and their solution is
tailored to deal with only a particular use case.

The authors in [5] propose a Haystack Tagging Ontology
(HTO) to complement the haystack entities and to be able
to query the data. The authors propose to annotate data using
HTO, and then by using a set of rules, generate the knowledge
(ontology) in order to query it. Transformation rules, written
in SPARUL/SPARQL, are used to populate the knowledge.
However, according to the authors, the transformation rules

are not always accurate. Moreover, using transformation rules
and SPARQL in embedded devices/gateways is not scalable
and aim to develop a lighter version of their approach in future.

The work in [12] proposes to use embedded devices for
storage and processing of RDF data. An in-network query
processor is presented to efficiently handle RDF data and to
execute SPARQL queries. This processor splits input queries
into sub-queries and sends them for execution on local de-
vices.The partial results are collected by the query processor
and the final answer is computed. However, it is challenging
to use embedded devices for forwarding intermediate results
to the base station.

VI. CONCLUSION

In this paper we presented SQenIoT allowing Schneider
Electric facility managers to query their devices in order to
retrieve details of the environment and to subscribe to events
and get notifications based on their preferences. We imple-
mented SQenIoT in our next generation hardware platform
and evaluated its performance. We have also identified several
future work items. Searching and aggregation queries are
useful for a first step, however, providing means to control the
behavior of these devices based on their status or application
requirements is also requested. We would also like to improve
the query algorithm that we used in this work to efficiently
deal with large number of devices. On the multi-level ontology
layers, we look forward to integrate Haystack as a specialised
ontology to enable cross domain data analytics.

REFERENCES

[1] L. Atzori, A. Iera, and G. Morabito, “The internet of things: A survey,”
Comput. Netw., vol. 54, no. 15, pp. 2787–2805, Oct. 2010.

[2] J. Ye et al., “Semantic web technologies in pervasive computing: A
survey and research roadmap,” Pervasive and Mobile Computing, 2015.

[3] I. Khan et al., “A data annotation architecture for semantic applications
in virtualized wireless sensor networks,” in Integrated Network Manage-
ment (IM), 2015 IFIP/IEEE International Symposium on, 2015.

[4] E. Kharlamov et al., “How semantic technologies can enhance data
access at siemens energy,” in The Semantic Web–ISWC, 2014.

[5] C. Victor et al., “An ontology design pattern for iot device tagging
systems,” 5th International Conference on the Internet of Things, 2015.

[6] C. E. Kaed, Y. Denneulin, and F. G. Ottogalli, “Dynamic service
adaptation for plug and play device interoperability,” in Proceedings of
the 7th International Conference on Network and Services Management.
International Federation for Information Processing, 2011, pp. 46–55.

[7] A. Gyrard and M. Serrano, “A unified semantic engine for internet of
things and smart cities: From sensor data to end-users applications,”
in 2015 IEEE International Conference on Data Science and Data
Intensive Systems. IEEE, 2015, pp. 718–725.

[8] K. Kotis et al., “Semantic interoperability on the web of things:
the semantic smart gateway framework,” in Complex, Intelligent and
Software Intensive Systems, Sixth International Conference on, 2012.

[9] T. Riedel et al., “Using web service gateways and code generation for
sustainable iot system development,” in Internet of Things (IOT), 2010.

[10] F. Jammes and H. Smit, “Service-oriented paradigms in industrial
automation,” Industrial informatics, IEEE transactions on, 2005.

[11] G. Cândido et al., “Enhancing device exchange agility in service-
oriented industrial automation,” in Industrial Electronics (ISIE), 2013
IEEE International Symposium on. IEEE, 2013, pp. 1–6.

[12] D. Boldt, H. Hasemann, A. Kröller, M. Karnstedt, and C. von der Weth,
“Sparql for networks of embedded systems,” in 2015 IEEE/WIC/ACM
International Conference on Web Intelligence and Intelligent Agent
Technology (WI-IAT). IEEE, Dec 2015, pp. 93–100.

SESA388470
Typewritten Text
This paper has been accepted in the technical track of IEEE 3rd World Forum IoT (IEEE WF-IoT) to be held on 12th Dec. 2016. This is an author copy for personal record.

